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Thne Fermilab Advanced Computer Program Multi-Microprocessor Project

T. Nash, H. Areti, J. Biel, G. Case, A. Cook,
M. Fischler, I. Gaines, R. Hance, D. Husby, T. Zmuda
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Fermilab’s  Advanced  Computer Program is
constructing a powerful 128 node multi-microprocessor
system for data analysis in high-energy physics. The
system will use commercial 32-bit microprocessors
programed in Fortran-~77. Extensive software supports
easy migration of user applications from a
uniprocessor environment te the multiprocessor and
provides sophisticated program development, debugging,
and error handling and recovery tools. This system is
designed to be readily copied, providing computing
cost effectiveness of below $2200 per VAX 11/780
equivalent. The low cost, commercial availability,
compatibility with off-line analysis programs, and
high data bandwidths (up to 160 MByte/sec) make the
system an ideal choice for applications to on-line
triggers as well as an offline data processor.

INTRODUCTION

The need for computing in high-energy physics has expanded to such an extent
that it is mno longer possible to do all the computing that is necessary on
conventional mainfrzmes. Single experiments amass tens of millions of events,
each of which requires several secomds of mainframe CPU time. The turn-on of the
new collider experiments like CDF and DO at Fermilab and the LEP experiments, all

with large computing appetites, further increases the need for less expensive
ccmputing power, '

Fermilab has established the Advanced Computer Program fACP) [1] to research
and develop more cost-effective and productive ways for high-energy physicists to
use computing. The group’s first project takes advantage of the event-oriented
nature of the experimental high-energy physics computing problem to produce a
powerful and efficient parallel processing system. Based on large arrays of
commercial 32-bit microprocessors programmable in Fortran, this will provide very
cost-effective computing for data analysis. In this paper we will deseribe this
initial project and its on and off line applications.

DESIGN GOALS

The primary design goal of the ACP multi-microprocessor system is to maximize
cost effectiveness, in terms of useful computing /dollar. This goal can be mel by
using two basic strategies: First, high-volume commercial microprocessors are the
computing engines of the systen. Sueh processors provide extremely high
cost-effectiveness and are programmable in high level languages. Second, at later
stages of the project, the CPUs will be augmented with custom "“hardware
subroutine® co-processors. The original aim was to achieve, without
co-processors, an equivalent computing power of better than 1 VAX 11/780 for
$5000. This goal now appears likely to be exceeded by more than a factor of two.



Equally important i= the goal of ease of use, or user-friendliness. Special
purpose processors for particular applications can be designed t¢ run almost
arbitrarily fast, but these are very inflexible and difficult to program- and
comnlission. We require  that the processors of our system be programmable in
Fortran-77, the standard for application programs in high-energy physics, The
user interface for program development, debugging, ete. must be at least as
friendly as that provided by the VAX VMS operating system, another widespread
standard in high-energy physies. Finally, the user must be able t¢ transport a
program already working on a VAX or similar uniprocessor system to the ACP system
with a minimum of effort, without extensive program conversions.

The third design goal is flexibility and modularity. The ACP system consists
of building blocks that can be easily reconfigured to meet the specific needs of
different users. Different users may require more or less memory or different
amounts of CPU power per I/0 bandwidth., The modular approach also guarantees that
the system can be easily upgraded as newer and more efficlient processors becone
available, This allows the system to take advantage of the most advanced and
cost-effective components available from industry at any time without
re-engineering the entire system. This alsc means that the system should not be
totally reliant on any single vendor for critical compeonents (such as the CPU chip
or board).

The fourth design goal is that the system should be easily copied and
maintained by non-experts. Users anywhere in the scientific community should be
able to build amd configure a system for their own needs without extensive
inveclvement by ACP personnel. This means that the system should be assembled as
much as possible out of commercially available components.

SYSTEM ARCHI TECTURE CONCEPTS

We are not attempting to build a general purpose computer to satisfy all
computing needs, or even all the needs of high energy physicists. Many computing
applications will still require general purpcse  mainframes with their
sophisticated operating systems and full complement of peripheral devices.
However, the large majority of computing cycles in high-energy physics are devoted
to experimental event reconstruction where the same program is run on many
millions of uncorrelated and independent events, The structure of the problem
makes a trivial parallelism possible, giving different events to each of a large
ensemble of processors with little or no interprocessor communication required.

This is an architecture which maintains its high cost effectiveness because
it has no need for complicated shared memory o synchronization mechanisms that a
fully general purpose parallel processor would need. The two other high-energy
physics problems that will require large amounts of CPU time, accelerator
simulations and lattice gauge theory caleulations, alse have simple parallelism
inherent in the problems themselves, These problems are well matched to arrays of
simply connected cost-effective microcomputers. In fact, it has been shown [2]
that many other scientific computing problems c¢an be well solved with such
systems, We will discuss here only the architecture pertinent to the
reconstruction problem. However, we intend to take advantage of the flexibility
of our system in future research on grid and ring architectures.

This simple event oriented architecture consists of a large array of
processing nodes all connected to a single host processor. The host delivers
events to each of the nodes. When a node completes processing an event, the host
will fetech that event from the node and deliver it a new one for processing. The
core of the system is the individual processing mode., It consists of a commercial
32-bit microprocessor, floating point coprocessor, and enough local memory (1-16
MBytes) to contain an entire program, Each node sits on a crate global bus and on
its own private local bus. The global bus is used to download code and data to



all the nodes, and (in the future) for the nodes to access any crate global
resources. The local bus allows each node to access its own memory without
interfering with any of the other mnodes. Customized coprocesscers and nearest
neighbor interconnection interfaces for use in grid structures will also be added,
in the future, to the processing nodes. The computing power of a node, without

specizl coprocessors, approaches that of a VAX 11/780 for physics problems in
Fortran. '
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controller which interfaces the crate to an ACP designed Branch Bus which
connects &all the crates. The first crates will be VME, but Multibus II,
Futurebus, BI-bus ¢or other 32 bit buses will be supported with a modified crate
controller, when appropriate for a particularly cost-effective CFU. The Branch
Bus is a simple single master RS 485 (differential TTL) bus, optimized for high
speed 32-bit block transfers. The Branch Bus transmission scheme has been tested
at speeds up to 40 MBytes/sec (one word every 100 nsec), and is intended to be
operated at 20 MBytes/sec. At the top of Fig.1 is the "root" of the tree-like
system, where the user’s host program runs. In this “simplest implementation
example the rcot consists of a standard VAX with tape drives, interfaced to the
Branch Bus through a DR11-W IMA interface and a Branch Bus Controller (BBC). An
entry level system of this type, attached to an existing VAX 11/780 or 11/750
installation, will cost less than $50,000 for over 15 VAX 11/780 power in one
crate of nodes.

Higher performance versions of the ACP system are shown in Fig.2 and 3. In
Fig.2 the root has been expanded. It is here based on two MicroVAXes. One
handles tape I/0 and Branch Bus comrunication, allowing the other MieroVAX to
devote all its CPU power to the user”s host program. The two MicroViXes
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comnunicate through shared Q-bus memory residing in a VME crate using GQ-bus to
VME interfaces (QVI). The system shown in Fig.3 adds an additional MicroVAX for
output, a bus switch, and a second Branch Bus so that an event can be sent to one
rode on one of the Branch Buses at the same time that 2 second event is being
fetched from a different node on the second bus. The switch allows up to 8
separate Branch Buses to be in simultaneous operation, reaching an aggregate
bandwidth of 160 Mbytes per second. Such a system can thus easily support any
presently conceived on-line application or off-line applications with future
higher speed mass storage peripherals (for example, laser disks). Fig.3
represents the system presently under ecnstruction.

SOFTWARE SUPPORT

The user’s main software task is to split an existing uniprocessor program
into two pieces, one which will run on the host and a second which will run in
parallel on all of the nodes. The host portion contains all the input and
output: reading raw events from, and writing processed events to, tape, reading
calibration files from disk, printing out results, ete. It also collects global
statistics frem nodes. The node portion contains all the actual event
processing, which typically consumes the vast majority of CPU time. By
necessity, all bilg data analysis programs already cleanly separate these host and
ncde tasks.,

The user will encounter two important software environments. The first is
the development hest, a large multi-user VAX system., It has a few nodes attached
to it for compiling and testing, and it supports the program development and
debugging activities described below. All program and data files reside on disks
on the development host, The production host, on the other hand, is a
single-user system with a large number of nodes., It is devoted to preduction
running of a single job for an extended period of time. It is networked to the
development host for downloading of programs and data.

An extensive package of software has been developed by the ACP which makes
the user’s task easy. It is described in a full User’s Manual [3]. This
software is provided in three layers of increasing complexity. The first layer
provides sufficient functionality for the majority of users with a minimum of
parameters and options. The individual user need only use those parts, if any,
of the second layer that are needed for a particular application., Layer 3, which
gives complete control over the system, is reserved for experts,

Aill data passing between the host and the nodes is done by standard ACP
subroutines called from the user’s host Fortran program. There are three modes
of passing data:

1. Event data. Routines SENDEVENT ané GETEVENT pass one or more blocks of event
data between the hest and a single node;

2. Broadcast data. Routine BROADCAST copies a block of calibration data from
the host to all the mnodes.

3. Statisties data. Routine SUMNODE sums blocks of statisties or histogram data
in all the modes into single corresponding blocks in the host.

The routines referred to above are in layer 1 of the multilayer support. More
generality 1is available in layer 2. For example, the layer 1 version of
SENDEVENT sends a single block of data to a fixed common block in any available
node. Using layer 2, users can, for example, send multiple blocks of data to the
same node, direct the event to a particular node or c¢lass of nodes, and send
variable length blocks of data.



Having prepared the Fortran source files for the host and for the nodes, the
user invokes a VMS command procedure MULTICOMP which performs all compilations
necessary to run on the multiprocessor system. This causes node files to be
corpiled and linked using the zppropriate node compilers. The host file will be
compiled and linked with ACP subroutines, including code that will download ard
startup the modes at run time., The user controls this procedure by entries in a
User Parameter File (UPF). This determines which source files are to be compiled
and linked and which libraries of rcutines are to be used. The UPF also contains
entries that control error handling and verification {see below), and specify the
particular running environment the user desires., The running environment can be
simulation within a single VAX, or a small number of nodes for testing attached
te a development host, or a full-scale production system of hundreds of nodes
under the production host. A simple RUN command starts execution.

The "operating system" in the node is extremely =simple and written in
Fortran, allowing it to be ported to different types of nodes very quickly. Its
Jjob is to support the Fortran run-time environment (but not to allow major 1I/0
operation, which are done on the host), and to provide for data transmission from
the host. The user’s event processing code is a subroutine in the node. When an
event is passed to the node, the system calls the user’s code. When processing
is complete the user returns control to the system, which automatically informs
the host of event completion. The node system also supports error handling.

A multiprocessor presents a number of additicnal ways to deal with errors
beyond those available on 2 uniprocessor. The ACP system gives the user five
options when an error occurs:

1. Ignore the error

2. Continue with new events in the node where the error occured (losing the
event with the error)

3. PReload and restart the offending node with a fresh copy of the program,
calibration constants, and data arrays

4, Kill the offending node, continuing the job with the remaining nodes

5. Abort the entire Jjob.

The user can specify in the UPF which of these actions are to be taken for
each of a number of different errors amd c¢lasses of errors, and can switch to a
more severe acticn after the occurrence of a certain number of errors. For
example, the error hamdler can ignore the first ten divide checks on a particular
node, and then kill that node after any additional divide checks. The user also
specifies what type of error lcg is to be saved for each error and how many nodes
must remain alive before the job is automatically aborted. Users can provide
special subroutines to be called on certain error conditions such as ABORT or
timeout. Defaults are provided so the user need make no entries in the UPF to
get standard error handling.

Part of the error handling system is a history file, which keeps track of
the events sent to each node. This is used by ACP utilities to reproduce the
precise sequence of events that produced a crash in some node so that the user
can investigate with an interactive debugger those common situations where an
unsuspected problem in an earlier event causes a crash at a later time.
Traceback support will be provided on the host based on analysis of memory dumps
which may be saved after an error.
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An important debugging technique available only on a multiprocessor system
is verification. An identical event is sent to two different nodes and result
data blocks compared. This technique c¢an catch both subtle hardware failures and
software bugs where the answer 1s Incorrectly dependent on the history of
previous events processed in a particular node. Verification 1is automatically
performed by the ACP software at a frequency specified by the user in the UPF,

PROJECT STATUS AND SCHEDULE

The ACP project 1s proceeding in a number cof phases. A six-node testbed
system with a complete software prototype was constructed and tested last summer.
This winter, benchmark boards based on the three 32-bit CPUs and accompanying
floating point processors (Motorocla 68020/68881, AT&T 32100/32106, and- DEC
78032/71032) were built and performance tests carried out., With the completion
of these preliminary activities we are now in the process of constructing a full
scale 12B-node system which is expected to be ready before the end of this year.
Future efforts will include incorporation of higher performance CPUs, higher
bandwidth I/0, development of custom c¢o-processors, and studies of different
interconnect architectures.

The Testbed System consisted of 5 68000 CPUs with 512kB of memory each, and
a single 8086/8087 CPU/FPU with 256kB of memory. The processors were in a 16-bit
Multibus-I crate, interfaced to a VAX 11/780 through a DR-11W interface. The
system was operated during the summer of 1984 with the full complement of
software described above. The overall performance of this system was low because
of the limited power of the 16-bit CPUs. The system was intended not for
performance but primarily to demonstrate the ease of converting large physics
application programs to the multiprocessor environment. Several actual track
reconstruction programs were run on the multiprocessor after only a few days of
program conversion effort. It alsc demonstrated that it is possible to use more
than one type of processor in a transparent way and to make efficient use of
multiple processors in the ACP system.

In the next stage of the project test boards for each of the three high
performance 32-bit C(PU/FPU chip combinations, Motorola, AT&T, and DEC, were
benchmarked. The boards used fast static RAM so the processors could be run with
0 wait cycles. A fixed number of wait cycles (dip-switch selectable} could be
inserted for all memory references to study performance degradation for slower
memory systems. Cache options could also be studied,

The 68020 and 32100 suffered less than 10% degradation when run at 1 wait
cycle (total of four CPU eycles for a memory access) with no external cache,
~ Since this 1 wait c¢ycle performance can be easily achieved wusing low-cost
high-density 120 nanosecond dynamic RAM (for processors running at 16.67 MHz),
the decision was made to build the full system using 1 wait cycle memory and mno
cache. Thus all benchmarks for these two CPUs were run with 1 wait cycle. The
DEC 78032 CPU, which requires slower memory access times, can be run at 0 wait
cycles with existing DRAM and was benchmarked accordingly.

Benchmarks were run using a physics event simulator and track reconstruction
code, written in Fortran 77. Our standard for comparison is the VAX 11/780 with
floating point accelerator, running Version 3 Fortran., Results were as follows:

CPU Cilock Compiler Performance/VAX
MHz measured expected

Mot. 68020 16.67 Absoft .57 >.8

AT&T 32100 16.67  AT&T T4 >.9

DEC 78032 ko VMS V4 .89 .89

Both the 68020 and 32100 compilers were unoptimized at the time the benchmarks
were performed, while the 78032 compiler is quite highly optimized. New
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cptimized versions of the first two compilers will become available later this
year, with expected performance improvements of 30-70%. Our best predictions for
performance at the end of 1985 are given in the last column of the table.

Presently we are designing
and constructing the components
for a full scale system of 128
nodes, using MicroViXes as
hosts. The node CPU beoards will
be built on standard VME cards
with 2 MBytes of onboard memory.
Expansion memory up to a total
of 8 MBytes is accomodated on an
additional VME card with a local
bus connection to the CPU card.
This expansion memory can be
placed either in the same VME
crate next to the CPU cards, or
in a separate VME crate located
Jjust below the CPU ecrate. A
daughter board connector on the
CPU card allows access to all
address, data and control lines,
This wiill be used for future
developments such as grid
interconnections and hardware
subroutines.
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The initial system will
contain 64 each 68020 and 32100
based processing nodes.
Additional processors using the
DEC 78032 and/or the Intel 80386
will ©be added when those chips
become commercially available,
Fig.4 shows a tentative layout
for the 68020 CPU multilayer PC *
card, which 1is presently being
laid out. The 32700 CPU board
will be quite similar. Memory
cards have also been designed. Fig, U Preliminary layout of ACP 68020 VME CPU

The branch bus and crate board with 2 Mbytes memory.
controller are in final

specification stage. The system is expected to be complete, with the full
complement of software described above, before the end of this year., 1t can be
readily copied at an assembled cost of about $2000 per node, including crates,
production host, and other overhead. Omnibyte Corporaticn, 245 West Roosevelt
Road, West Chicago, Illinois 60185, will sell the 68020 and 32100 boards at
prices, including a 2 year warranty, very close to self fabrication costs.
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ON-LINE APPLICATIONS

The same features which make the ACP system attractive for use in off-line
systems  (the low cost per node, ease of programming, and high system
performance), also make it suitable for use in on-line applications. Another
important factor is the ability to use exactly the same software for both
coff-line and on-line. The up to 160 MBytes/sec bandwidth of the Branch Bus and
switch system exceeds the data collection bandwidth of virtually all experiments.
The large amount of memory available in each CPU node provides a natural place to
buffer events. The system is thus well-suited for use as a higher level trigger
in an on-line environment. '



rig.5 shows an arrangement of ACP nodes in an on-line experiment, Events
are delivered to the processing nodes from the experiment’s data acquisition bus
interfaced to the ACP Branch Bus. Branch Bus interfaces are planned for FASTRBUS,
Q-Bus and Unibus. Events are read out and logged on tape through a MicroVAX root
a5 in the off-line case, User software controlling the system runs in the
Resource Manager MicroVAX, which should be networked, as in the off-line case, to
a larger development host VAX where programs are developed, tested, and stored.

BATA ACOUISITION SYSTEM )
0-22 . There are several
H'*IE';B 0-22 possibilities for the control
UK ACP || TRPE " of the processing nodes in an
DATR MICRD CONT on-line system, depending on
RESOURCE COMM 1| acauisition URH &é’ 'system requirements,
LINK SUPERUISOR g
MANRGER CUTPUT Simplest is to leave complete
control in the hands of the
. ACP Resource Manager, In
DR DRU this  case, the Resource
11 " Manager will communicate the
address of the next free node
l to the data acquisition
supervisor when the event
BEC oceurs. The data acquisition
isimply delivers the event to
Ethe correct address. If no
nodes are available, the data
acquisition  -system must
INTERFACE declare dead time and wait
BEC for a node to become free.
Alternatively, - more
_1 intelligence can be vested in
the controllers of the data
Bus Swiich . acquisition system. 1In this
case, the ACP resource
y Branch Bus manager continues to check
for errors and monitors event
Crate of Crate of completion. However, the
Nodes Nodes actual allocation of nodes is
done by the experimental data
::acquisition system, This
provides for less latency at
each event occurance, and
Crate of Crate of allows the data acquisition
Nodes Nodes system to use its judgement
to free up nodes when the
Fig. 5 Conceptual design for an on-line system gets too busy.
system using ACP components.

The modularity of the software in the Resource Manager makes it easy to set
up a system with contrel distributed appropriately for a particular experiment.
In all cases, some communicaticn path is necessary from the ACP Resource Manager
to the supervisor of the data acquisition system., Depending on the application,
this communication can be over DECNET, FASTBUS, or other standard buses., Such a
system will be able to deliver 100 events per second to the nodes, The system
could accommodate as many as 512 nodes with a total CPU power of over 400 VAX 780
ecuivalents, Outpuft rate 1is determined by the speed of mass storage devices
available, with a single Branch Bus able to run at 20 MBytes/sec for output. The
ACP system 1is expected to be used as the Level 3 trigger for CDF at Fermilab.
Details of the interface to the CDF data acquisition will be designed this
summer.
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In general, cnline tbigger processors are a research areg where the
precisely correct approach is not yet clear, Particularly for the SSC, new and
imaginative methods need to be tried and evaluated. A major strength of the ACP
system 1s its flexibility, which allows tests of a number of different
configurations before the best approach to the problem of dealing with
luminosities of 10%*33 is known.
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